Approximation Algorithms and Hardness of Approximation April 9 , 2013 Lecture 12

نویسنده

  • Siddhartha Brahma
چکیده

1.1 Complementary Slackness: Full and Approximate Recall our canonical linear programs, where x ∈ R, y ∈ R, A ∈ R, b ∈ R, c ∈ R. Primal (P) min cx Ax ≥ b x ≥ 0 Dual (D) max by A y ≤ c y ≥ 0 Also recall that Strong Duality ensures that if both (P) and (D) have finite optima, they are equal. Assume this is the case. Then, for the optima x and y of the primal and dual programs respectively, we have cx = n ∑

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation Algorithms and Hardness of Approximation March 19 , 2013 Lecture 9 and 10 : Iterative rounding II

In the last lecture we saw a framework for building approximation algorithms using iterative rounding: 1. Formulate the problem as a linear program (LP) 2. Characterise extreme point structure 3. Iterative algorithm 4. Analysis We used this framework to solve two problems: Matchings in Bipartite Graphs and the Generalised Assignment Problem. A negative point about this approach is that it requi...

متن کامل

Approximation Algorithms and Hardness of Approximation January

In the previous lecture we saw examples of greedy algorithms that made locally optimal decisions at each step to arrive at a solution that wasn’t too far from the optimal solution in the end. Specifically for the case of Set Cover we saw that this strategy leads to the best possible approximation algorithm we could hope for (unless NP ⊂ DTIME(n ), which is very unlikely). In general, we also no...

متن کامل

2 Maximum Coverage 2.1 Problem Definition

In the previous lecture we covered polynomial time reductions and approximation algorithms for vertex cover and set cover problems. By reductions we showed that SAT, 3SAT, Independent Set, Vertex Cover, Integer Programming, and Clique problems are NP-Hard. In this lecture we will continue to cover approximation algorithms for maximum coverage and metric TSP problems. We will also cover Strong N...

متن کامل

Efficient Approximation Algorithms for Point-set Diameter in Higher Dimensions

We study the problem of computing the diameter of a  set of $n$ points in $d$-dimensional Euclidean space for a fixed dimension $d$, and propose a new $(1+varepsilon)$-approximation algorithm with $O(n+ 1/varepsilon^{d-1})$ time and $O(n)$ space, where $0 < varepsilonleqslant 1$. We also show that the proposed algorithm can be modified to a $(1+O(varepsilon))$-approximation algorithm with $O(n+...

متن کامل

Lec . 2 : Approximation Algorithms for NP - hard Problems ( Part II )

We will continue the survey of approximation algorithms in this lecture. First, we will discuss a (1+ε)-approximation algorithm for Knapsack in time poly(n, 1/ε). We will then see applications of some heavy hammers such as linear programming (LP) and semi-definite programming (SDP) towards approximation algorithms. More specifically, we will see LPbased approximation for MAXSAT and MAXCUT. In t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013